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Abstract 

Atlantic bluefin tuna (ABFT; Thunnus thynnus) spawn primarily in the Gulf of Mexico and 

Mediterranean Sea but migrate to foraging habitats throughout the North Atlantic where they are 

the target of commercial and recreational fisheries. Natal origin has been characterized through 

otolith oxygen isotope analysis to link fish on both spawning grounds and foraging habitats to 

their spawning ground origins but connectivity on a shorter, seasonal timescale is still not 

completely understood. Nitrogen isoscapes in the North Atlantic include a distinct separation of 

productive, nearshore and more oligotrophic open ocean foraging habitats. We used linear 

discriminant analysis of bulk nitrogen isotope data to estimate the percent of ABFT that occupied 

shelf or open ocean foraging habitats prior to capture on eastern and western Atlantic spawning 

grounds. ABFT in the Gulf of Mexico were mainly classified as previous shelf foragers (91%) 

while ABFT associated with eastern Atlantic spawning grounds primarily had an open 

ocean/Mediterranean Sea classification (96% Morocco, 79% Strait of Gibraltar, 87% Balearic 

Sea, 100% Adriatic Sea). Amino acid nitrogen isotope data of ABFT from the Gulf of Mexico 

confirmed that observed bulk nitrogen isotope differences were due to baseline rather than 
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trophic variability and source amino acid values generally aligned most closely with literature 

values from shelf and slope waters rather than open ocean habitats. These data provide insight 

into the foraging habitats that support eastern and western Atlantic spawning assemblages.   
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Introduction 

Atlantic bluefin tuna (ABFT; Thunnus thynnus) are highly migratory top predators that 

support fisheries throughout the North Atlantic and Mediterranean Sea (Mather et al. 1995; 

Fromentin and Powers 2005). ABFT are currently managed by the International Commission for 

the Conservation of Atlantic Tunas (ICCAT) as two separate (i.e., eastern and western) stocks 

divided at the 45ºW meridian. Stock independence has been supported by genetic (Carlsson et al. 

2007) and tagging (Block et al. 2005) data. However, shelf and open ocean waters throughout the 

North Atlantic act as both foraging and fishing grounds for the species; furthermore, there is 

mounting evidence from electronic tagging and chemical tracer studies of ABFT migrations and 

mixing between eastern and western management areas (Walli et al. 2009; Rooker et al. 2014; 

Kerr et al. 2020). Electronic tagging data have revealed complex and varied migratory patterns, 

including movement across the stock boundary (Block et al. 2001; Walli et al. 2009; Galuardi et 

al. 2010; Aarestrup et al. 2022). The extent to which eastern and western stock fish occupy the 

feeding grounds of the other stock complicates management of this highly valuable species. 

Making this problem more contentious is the large difference in stock sizes with the eastern 

stock being estimated at an order of magnitude larger than the western stock (Anonymous 2017).  

Like other tunas, bluefin tuna are “energy speculators” (Brill 1996; Korsmeyer et al. 1996) 

with high metabolic rates (Korsmeyer and Dewar 2001; Fitzgibbon et al. 2007), regional endothermy 

(Carey and Teal 1966), and rapid gut evacuation (Butler and Mason 1978) that collectively facilitate 

concentrated periods of foraging when they coincide in space and time with dense prey aggregations. 

ABFT undertake long migrations to access productive shelf and open ocean foraging habitats 

throughout the North Atlantic Ocean (Rivas 1955; Mather et al. 1995). Energy stores acquired at 

these productive foraging habitats in turn provide fuel for migrations to spawning grounds and 

reproductive output (Chapman et al. 2011).  

While ABFT forage and migrate widely throughout the North Atlantic Ocean, their 

spawning grounds are more temporally and spatially constrained (Mather et al. 1995; Fromentin 

and Powers 2005; Rooker et al. 2007). Western Atlantic spawning occurs primarily from April to 



3 
 

June along the Loop Current front and the northern Gulf of Mexico’s deep water region (Baglin 

1982; Knapp et al. 2014; Domingues et al. 2016; Le-Alvarado et al. 2021). Additional spawning 

may occur in the Slope Sea (Richardson et al. 2016; Hernández et al. 2022), but the importance 

of this region is less well understood (Safina 2016; Walter III et al. 2016). Spawning in the 

eastern Atlantic occurs in regions of the eastern, central, and western Mediterranean Sea: the 

Levantine Sea, Malta and Tyrrhenian Sea, and Balearic Sea, respectively (Corriero et al. 2020). 

Relative to the Gulf of Mexico, ABFT spawning is delayed in the Mediterranean Sea with 

activity initiating in the eastern Atlantic in May and progressing in an east to west direction with 

Balearic Sea spawning commencing in July (Corriero et al. 2020). Age at sexual maturity for the 

Mediterranean Sea is estimated to be younger (3-5 years (Corriero et al. 2005)) than Gulf of 

Mexico spawners (8 years (Baglin 1982), although a recent reconsideration of these estimates 

suggests that they may be more similar (Corriero et al. 2020). The Gulf of Mexico spawning 

assemblage is thought to be tightly linked to western Atlantic foraging habitats based on existing 

catch, tagging, and chemical tracer data (Rivas 1955; Rooker et al. 2007; Dickhut et al. 2009; 

Wilson et al. 2015). Specifically, Gulf of Mexico spawners have documented migrations from 

Canadian shelf foraging habitats in the Gulf of St. Lawrence (Wilson et al. 2015) and Nova 

Scotia (Galuardi et al. 2010) as well as U.S. shelf waters off New England (Stokesbury et al. 

2004) and the Mid-Atlantic Bight (Block et al. 2005). Recent electronic tagging data show a 

greater connectivity with open ocean and shelf foraging habitats in the eastern Atlantic and 

Mediterranean Sea for eastern Atlantic spawners (Aranda et al. 2013; Fromentin and 

Lopuszanski 2014; Cermeño et al. 2015; Abascal et al. 2016). ABFT tagged in Mediterranean 

Sea spawning habitats resided within the northwestern Mediterranean Sea and Adriatic Sea 

following the spawning period (Fromentin and Lopuszanski 2014; Cermeño et al. 2015). ABFT 

also migrated out of the Mediterranean Sea to shelf waters off the Iberian coast and Bay of 

Biscay and broadly across open ocean waters ranging approximately from Iceland to Ireland 

(Aranda et al. 2013).  

The Gulf of Mexico and Mediterranean Sea also provide foraging habitat for ABFT 

(Karakulak et al. 2009; de la Serna et al. 2012; Battaglia et al. 2013; Butler et al. 2015). 

Mediterranean foraging is well documented, with diet including zooplanktivorous fishes in the 

western Mediterranean Sea and mesopelagic fishes and cephalopods in central and eastern 

Mediterranean habitats (Karakulak et al. 2009; Battaglia et al. 2013). Prolonged residence 
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beyond the spawning period in the Mediterranean Sea provides further evidence for this region 

as a foraging habitat (Cermeño et al. 2015). Arrivals months prior to spawning (Galuardi et al. 

2010; Wilson et al. 2015) combined with direct evidence of foraging, elevated lipid stores, and a 

lack of starvation-induced 15N enrichment (Butler et al. 2015) collectively suggest the Gulf of 

Mexico acts as both a foraging habitat and spawning ground. (Block et al. 2001; Stokesbury et 

al. 2004; Block et al. 2005; Teo et al. 2007a; Galuardi et al. 2010; Wilson et al. 2015). Individual 

ABFT residency in the Gulf of Mexico varies from one month (Block et al. 2001; Teo et al. 

2007a) to more than five months (Galuardi et al. 2010) with average reported residences of 39 

(Teo et al. 2007a) and 123 (Wilson et al. 2015) days. Diet during this time period includes 

primarily pelagic tunicates (Pyrosoma atlanticum) and fishes (Butler et al. 2015). 

Bulk stable isotope analysis (BSIA) has been used as an alternative or complementary 

approach to tagging studies to characterize habitat use (Abrantes and Barnett 2011) and track 

movements of a variety of fishes and other marine taxa including top predators (Hobson 2007b; 

Graham et al. 2010).. Fish movements have been tracked between mangroves and coral reefs 

(Nakamura et al. 2008), within estuaries (McMahon et al. 2005; Suzuki et al. 2005; Haas et al. 

2009), and between coastal and open ocean systems (Rodgers and Wing 2008). In the marine 

environment, distinct provinces show characteristic isotopic signatures (e.g., δ13C, δ15N), which 

allow past diet and location to be measured (Hobson 1999, 2007a, b; Rubenstein and Hobson 

2004). In the North Atlantic Ocean, nitrogen isotope values show a clear spatial gradient with 

higher baseline values in productive shelf foraging habitats and lower baselines associated with 

more oligotrophic open ocean foraging habitats where nitrogen fixation is prevalent (McMahon 

et al. 2013). These spatial isotopic gradients, or “isoscapes” sensu West et al. (2010), provide a 

means of tracking migratory patterns for marine predators feeding in regions with different 

isotope values as regional isotope differences are propagated up trophic levels, all the way up to 

apex predators such as tunas (Graham et al. 2010; Logan et al. 2020). In the North Atlantic 

Ocean, isoscapes have been mapped previously for nitrogen using zooplankton values as well as 

biogeochemical modelling (Somes et al. 2010; McMahon et al. 2013; Schmittner and Somes 

2016). Within the Gulf of Mexico, a basin-wide zooplankton-based isoscape indicated a marked 

north to south gradient in δ15N, with higher values over the northern shelf that allowed for 

inference of the feeding grounds of yellowfin tuna, Thunnus albacares (Le-Alvarado et al. 2021). 

An SIA approach was used to assess residency of adult ABFT on Gulf of Maine foraging 
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habitats (Logan et al. 2015). Similarly, nitrogen isotope gradients have been used to track arrival 

and residency of Pacific bluefin tuna (Thunnus orientalis) (Madigan et al. 2014) and yellowfin 

tuna (T. albacares) (Graham et al. 2010) on Pacific foraging habitats.  

Compound specific stable isotope analysis of amino acids (AA-CSIA) is another tool that 

can be used to infer movements of various taxa including marine top predators (Popp et al. 2007; 

McMahon and Newsome 2019). AA-CSIA is a useful complement to BSIA-based movement 

assessments as the former can help distinguish trophic and migratory sources of variation in the 

latter. “Source” amino acids, which undergo minimal alteration with trophic transfer, can be 

subtracted from corresponding amino acids that undergo greater discrimination with metabolism 

(i.e., “trophic” amino acids) to separate baseline and trophic influences (McMahon and 

Newsome 2019). AA-CSIA of δ15N has been applied to large pelagic species to infer residency 

and movements (Popp et al. 2007; Seminoff et al. 2012; Madigan et al. 2014). 

Given that different metabolically active tissues integrate distinct feeding periods based 

on their rate of isotopic turnover (e.g., Hobson 1999; Heady and Moore 2012; Matley et al. 

2016), it is feasible to infer feeding grounds over various time scales (Malpica-Cruz et al. 2013; 

Munroe et al. 2015; Le-Alvarado et al. 2021). Madigan et al. (2012) conducted a controlled 

feeding study on Pacific bluefin tuna 63-92 curved fork length (CFL), and estimated a nitrogen 

isotopic half-life of 86 and 167 days for liver and muscle tissues, respectively. Hence, while the 

isotopic composition of the muscle tissue of ABFT should reflect foraging habitats over the time 

scale of several months, that of liver tissue should reflect more local foraging, providing a means 

for generating an isoscape with which to infer migration. 

Our goal was to improve understanding of habitat types used to fuel ABFT spawning. We 

created nitrogen isoscapes for ABFT shelf and open ocean foraging habitats using nitrogen 

isotope data from ABFT and swordfish (Xiphias gladius) liver based on individuals harvested 

from multiple regions representative of these two habitat types in the North Atlantic Ocean. We 

used bulk nitrogen stable isotope values of white muscle as a proxy for past foraging habitats 

from ABFT harvested on eastern and western Atlantic spawning grounds and migratory 

corridors. We then assigned ABFT sampled on the Gulf of Mexico and Mediterranean Sea 

spawning grounds and Atlantic migration corridors to one of these habitat types based on their 

muscle stable isotope values using linear discriminant analysis.  
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Methods 

Tissue samples were collected from fisheries targeting ABFT and other large pelagic 

fishes in North Atlantic foraging habitats (liver) as well as Gulf of Mexico and Mediterranean 

Sea spawning grounds (muscle) (Fig. 1). Liver  stable isotope data for all shelf and open ocean 

foraging habitats as well as muscle stable isotope data for spawning-related Strait of Gibraltar 

and Balearic Sea habitats were obtained from published datasets(Logan 2009; Varela et al. 2011, 

2013, 2020, 2022; Logan and Lutcavage 2013; Logan et al. 2015; Navarro et al. 2020). White 

muscle tissue samples from the Gulf of Mexico (2007-2013), coast of Morocco (2010), and 

Adriatic Sea (2010) were collected as part of this study. Sample collection, preparation, and 

analysis methods for published data are described in those respective studies but all follow 

conventional methods for bulk stable isotope analysis. All Gulf of Mexico, coast of Morocco, 

and Adriatic Sea samples were stored on ice, then frozen until preparation for stable isotope 

analysis (SIA). Tissue samples were later thawed, rinsed in deionized water, freeze dried, 

pulverized, placed in sealed vials, and stored in a desiccator at -20°C until subsampling.  

Bulk Stable Isotope Analysis (BSIA) 

For Gulf of Mexico and Mediterranean Sea samples, an aliquot of approximately 2.5 mg 

of dry homogenized tissue was weighed into a tin capsule and placed in a 96-well plate. Stable 

nitrogen (δ15N) isotopes and elemental percent (%C, %N) of Gulf of Mexico ABFT muscle 

samples were measured at the University of New Hampshire Stable Isotope Lab on an Elementar 

Americas Pyrocube elemental analyzer coupled to a GeoVision isotope ratio mass spectrometer. 

Samples from the coast of Morocco and Adriatic Sea were analyzed at the University of A 

Coruña through a gas flow system using a Thermo Finnigan Flash EA1112 elemental analyzer 

coupled to a Thermo Finnigan Delta Plus isotope ratio mass spectrometer. The measurement 

uncertainty of the instrument as determined by repeated analyses of in-house QA/QC standards 

was approximately 0.2‰ for δ15N at both laboratories. The measured 15N abundance values are 

reported relative to atmospheric nitrogen (Air) using the following international reference 

materials: USGS25, USGS40, IAEA-N1, USGS42, USGS43, IAEA-N2, and USGS41. All 

nitrogen isotope data are reported in δ notation according to the following equation (Brand 

2011):   
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Amino Acid Compound-Specific Stable Isotope Analysis (AA-CSIA) 

A subset of Gulf of Mexico muscle samples classified as shelf (n=46) and open ocean 

(n=20) migrants (see Results) spanning a range of sizes (SFL=204-276 cm) and bulk δ15N values 

(10.1-15.3‰) was selected for amino acid nitrogen SIA to determine if bulk δ15N differences 

were due to baseline or trophic variation. Dried, homogenized samples were analyzed at the 

University of California Davis Stable Isotope Facility following acid hydrolysis using gas 

chromatography combustion isotope ratio mass spectrometry (GC-C-IRMS) on a Thermo Trace 

GC 1310 gas chromatograph coupled to a Thermo Scientific Delta V Advantage isotope-ratio 

mass spectrometer via a GC IsoLink II combustion interface. Detailed methods are provided in 

Walsh et al. (2014) and Yarnes and Herszage (2017). CSIA generated δ15N data for 15 individual 

amino acids: alanine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, leucine, lysine, 

methionine, phenylalanine, proline, serine, threonine, tyrosine, and valine.  

 Trophic position (TP) was estimated using the weighted averages of a suite of three 

representative “source” (glycine, lysine, and phenylalanine) and “trophic” (alanine, glutamic 

acid, and leucine) amino acids following methods described by Choy et al. (2015) and Bradley et 

al. (2015). A recent meta-analysis demonstrated that this approach of combining multiple amino 

acids increases the precision of TP estimates (Nielsen et al. 2015). TP is calculated based on the 

weighted average source and trophic δ15N values, estimates of the difference in the weighted 

δ15N averages of the source and trophic amino acids at the base of the marine food web 

(β=3.6‰), as well as the trophic discrimination factor (TDF=5.7‰) separating these two classes 

of amino acids with each trophic transfer. Values for β and TDF were based on published data 

for marine teleosts (Bradley et al. 2015).  

 

Propagation of error was calculated for these AA-CSIA-based TP estimates. Analytical 

error was estimated as 0.5‰, while error for βTr-Src and TDF Tr-Src was estimated as 0.5 and 0.3 

‰, respectively, following Choy et al. (2015). Propagation of analytical and methodological 

error (SDa+m) was completed using the propagate package (Spiess 2014) in R (R Core Team 

2022). Propagated analytical and methodological error (SDa+m) was then combined with 

individual error (SDind) to generate a total propagated error using the following equation: 
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SDtotal =  

Calculated TP estimates were compared to bulk δ15N values and migratory classifications to 

determine if bulk δ15N differences were being driven primarily by baseline (i.e., migratory) 

rather than trophic variation. We tested for any size-based (straight fork length) correlation with 

TP for the open ocean and shelf classification groups using linear regression.   

To further explore the spatial identity of general shelf and open ocean classifications, 

representative source amino acid δ15N values (Lys, Phe, and Met) from Gulf of Mexico ABFT 

were compared to values reported in the literature from other marine fauna in representative shelf 

and open ocean ABFT foraging habitats (McClelland et al. 2003; Choy et al. 2012; Mompeán et 

al. 2016; Uriarte et al. 2016 Unpubl. Data; Varela et al. 2018a; Laiz-Carrión et al. 2019; Varela 

et al. 2019; Phillips et al. 2020; Le-Alvarado et al. 2021; Austin 2022; Logan Unpubl. Data; 

Sherwood Unpubl. Data; Herzka Unpubl. Data). These source amino acids were selected since 

they are currently considered the most reliable baseline indicators due to minimal isotopic 

discrimination upon trophic transfer (McMahon and Newsome 2018). To account for expected 

differences among fauna due to different TPs, all literature values were normalized based on 

their estimated TP relative to our shelf migrant ABFT group and estimated diet tissue 

discrimination factors. TP estimates were based on amino acid data calculated in the source 

literature with the exception of soft corals from the NW Atlantic for which TP was based on bulk 

consumer and baseline δ15N values (Sherwood et al. 2005). Literature values were normalized to 

our Gulf of Mexico shelf migrant dataset based on estimated TP and isotopic discrimination 

using the following equation:   

   

where δ15NABFT Shelf is the average source amino acid δ15N value for Gulf of Mexico shelf migrant 

ABFT, δ15N 15
Literature is the average source amino acid δ N value for a given literature taxa, and 

TDF is the estimated trophic discrimination factor for the specific source amino acid used in the 

calculation. TDFs used for the three selected source amino acids were 0.1‰ (Phe), 0.4‰ (Met), 

and 0.8‰ (Lys) based on results of a meta-analysis reported in McMahon and McCarthy (2016). 
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TPABFT Shelf and TPLiterature were the estimated respective trophic positions based on source and 

trophic amino acid data (eq. 1).  

Data Analysis 

A nitrogen isoscape was generated using liver tissue samples of ABFT collected from 

shelf and open ocean foraging habitats (Fig. 1). Liver data were used to classify foraging areas 

since isotopic turnover is more rapid in this tissue relative to white muscle (Madigan et al. 2012; 

Thomas and Crowther 2015) and generally reflects a more recent diet rather than the past 

migratory history (MacNeil et al. 2005; Le-Alvarado et al. 2021). Liver δ15N values were 

adjusted for the estimated isotopic offset between white muscle and liver of +0.8 ‰ (Madigan et 

al. 2012). Liver δ15N values from ABFT harvested on shelf foraging habitats were enriched in 

15N relative to open ocean foraging habitats with an approximate median separation between 

regional datasets from each group of 3-4 ‰ (Fig. 2). Liver δ15N values were compared between 

shelf and open ocean groups using a Wilcoxon rank sum test. Median values significantly 

differed between groups (p<0.001) with a large effect size (r=0.86) which supports the use of 

liver isotope ratios in the nitrogen isoscape. 

Shelf vs. open ocean foraging history based on bulk isotope values was determined with 

linear discriminant analysis (LDA) using the MASS package in R (R Core Team 2022). A 

training and test dataset was created using liver δ15N values from representative Atlantic shelf 

(Gulf of St. Lawrence, Nova Scotia, Gulf of Maine, Mid-Atlantic Bight) and open ocean (eastern 

and western central Atlantic, Canary Islands, and Mediterranean Sea) foraging habitats (Figs. 1 

and 2). Liver data were not available for ABFT or comparable fish predators from the eastern 

Atlantic shelf region, but similar prey δ15N values provide support for selected western shelf 

habitats also being representative of eastern shelf habitats. For example, average squid (Illex 

spp.), euphausiid, and Atlantic herring (Clupea harengus) δ15N values differ by less than 0.7 ‰ 

for the two shelf regions (Table S1; Fry 1988; MacNeil et al. 2005; Lavoie et al. 2010; Logan et 

al. 2011, 2015; Chouvelon et al. 2012; Ryan et al. 2014; Malek et al. 2016). Eastern Atlantic 

shelf prey also have higher δ15N values than conspecifics from the Mediterranean Sea with 

average δ15N offsets of 1.7 ‰ (anchovy), 1.9 ‰ (euphausiid), 2.1 ‰ (Illex spp.), and 3.0 ‰ 

(sardine) among common prey (Table S1; Bode et al. 2007; Cardona et al. 2012; Chouvelon et 

al. 2012, 2014; Costalago et al. 2012; Barría et al. 2015; Martínez-Baena et al. 2016; Rumolo et 
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al. 2016, 2018; Mellon-Duval et al. 2017; Zorica et al. 2021). The persistence of this δ15N 

gradient between Atlantic shelf and Mediterranean waters even for prey sampled in 

Mediterranean Sea shelf waters (e.g., sardines and anchovies from the Gulf of Lions (Table S1; 

Costalago et al. 2012)) indicates that the open ocean classification group could include shelf 

foragers within the Mediterranean Sea. The dataset was randomly sub-divided with 60% used for 

training and 40% for testing. All liver data were derived from commercially landed ABFT with 

the exception of the western central Atlantic and Mediterranean Sea, which were represented by 

Atlantic swordfish (Logan and Lutcavage 2013; Navarro et al. 2020). Swordfish were used as a 

proxy due to a lack of adult ABFT data in these regions and similar offshore TP and diet between 

species (Matthews et al. 1977; Logan et al. 2013; Varela et al. 2018b; Navarro et al. 2020). 

Accuracy was estimated using resubstitution error. LDA was then applied to muscle tissue from 

the mixed stocks consisting of the Gulf of Mexico (western Atlantic spawning ground), coast of 

Morocco and Strait of Gibraltar (eastern Atlantic spawning migration corridors), and Balearic 

and Adriatic Sea (eastern Atlantic spawning grounds) to classify individual fish according to past 

foraging habitat (shelf or open ocean). For samples from the eastern Atlantic, only individuals > 

130 cm SFL, the estimated minimum length of 100% maturity for Mediterranean spawners 

(Corriero et al. 2005), were included in migration classification analyses since the Mediterranean 

Sea functions as both spawning and foraging habitat (Sara and Sara 2007; Corriero et al. 2020).    

Results
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Classification accuracy of training and testing data was 97.9% and 97.5%, respectively, 

with the majority of western and eastern Atlantic samples classified as shelf and open ocean 

foragers, respectively (Table 1). Over 90% of Gulf of Mexico spawners were classified as shelf 

migrants while eastern Atlantic regions had greater open ocean/Mediterranean Sea representation 

ranging from 79% for the Strait of Gibraltar to 100% for the Adriatic Sea. For regions with 

multi-year datasets, the relative percent of shelf and open ocean/Mediterranean Sea migrant 

classifications varied across years with 2012 having the highest open ocean/Mediterranean Sea 

representation for the Gulf of Mexico (22%) and highest shelf representation for the Strait of 

Gibraltar (58%) (Table 1; Fig. 3).   

 Gulf of Mexico shelf and open ocean/Mediterranean Sea migrant groups had similar TP 

estimates based on AA-CSIA data of (x̅ ± SD: 4.4±0.6) and (x̅ ± SD: 4.1±0.9) for shelf and open 

ocean/Mediterranean Sea groups, respectively, while average bulk δ15N values for the two 

groups were 13.3 and 11.5‰. Assuming a δ15N diet-tissue discrimination factor for tuna white 

muscle of 1.9 ‰ (Madigan et al. 2012), the TP for the two groups based on bulk δ15N would be 

~ 1 TP. TP was not significantly correlated with fork length for either open ocean (r2=0.06, 

F1,17=0.05, p=0.83) or shelf (r2 < 0.01, F1,43=1.19, p=0.28) groups.  

 After accounting for differences in TP, source amino acid δ15N values for Gulf of Mexico 

ABFT matched most closely with marine fauna from Northwest and Northeast Atlantic shelf and 

slope waters (Fig. 4, S1; Table S2). ABFT source values aligned most closely with TP-corrected 

values for loggerhead sea turtles (Caretta caretta) from the western Atlantic shelf as well as 

ocean sunfish (Mola mola) from both the eastern and western Atlantic shelves with all values 

falling within 3.6 ‰ following TP adjustment (Table S2). Similar TP-adjusted source amino acid 

δ15N values (δ15N <4 ‰; Table S2) were also observed for some fauna from open ocean 
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habitats (e.g., Lys for ocean sunfish from the Mediterranean Sea and yellowfin tuna from the 

Gulf of Mexico). Literature source amino acid values from the Tropical North Atlantic and Mid 

Atlantic Ridge differed most from Gulf of Mexico ABFT with TP-adjusted differences of ~ ≥10 

‰ for most source amino acids and literature datasets (Table S2).   

Discussion 

 Atlantic bluefin tuna (ABFT) occupying eastern and western spawning grounds showed 

different prior foraging habitat preferences with western Atlantic spawners relying mainly on 

shelf waters and eastern Atlantic spawners instead primarily using open ocean and/or 

Mediterranean Sea foraging  habitats. While percentages varied annually and among sampling 

regions, ABFT from eastern and western spawning grounds had a consistent primary reliance on 

the respective dominant past foraging habitat of approximately 80-100% of the sampled 

population. These findings are consistent with habitat use characterized by past tagging and 

chemical tracer studies (Dickhut et al. 2009; Walli et al. 2009; Galuardi et al. 2010; Aranda et al. 

2013; Wilson et al. 2015). 

 Bulk stable isotope data alone cannot distinguish eastern and western shelf foraging 

habitats (e.g., Table S1), but past catch, tagging, and chemical tracer data have shown a high 

level of connectivity between western shelf foraging and subsequent Gulf of Mexico occupancy 

(Rivas 1955; Mather et al. 1995; Stokesbury et al. 2004; Dickhut et al. 2009; Galuardi et al. 

2010; Wilson et al. 2015). Analysis of catch records in the 1950’s suggested a connectivity 

between seasonal foraging habitats in the Northwest Atlantic and Gulf of Mexico spawning 

grounds (Rivas 1955), and conventional tagging studies in the 1970’s provided direct evidence of 

this migratory pathway (Mather et al. 1995). Conventional and electronic tagging results have 

shown movements of adult ABFT from the New England, Canadian, and Carolina shelves 
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(Mather et al. 1995; Block et al. 2001; Stokesbury et al. 2004; Block et al. 2005; Teo et al. 

2007a; Walli et al. 2009; Galuardi et al. 2010; Wilson et al. 2015), that were included in our shelf 

isoscape (Fig. 1), to the Gulf of Mexico. Organochlorine contaminant ratios in ABFT (n=16) 

from the Gulf of Mexico were all similar to values from western North Atlantic ABFT, providing 

evidence of recent energy acquisition from western shelf habitats (Dickhut et al. 2009). Most 

ABFT tagged during fall months in the Gulf of St. Lawrence foraging habitat (n=49; 74%) 

traveled to the Gulf of Mexico (Wilson et al. 2015).  

While ABFT use the Gulf of Mexico as foraging habitat (Butler et al. 2015) and tagging 

data suggest it may act as a winter foraging habitat prior to spring spawning (Galuardi et al. 

2010; Wilson et al. 2015), high muscle bulk δ15N values suggest that their primary energy source 

prior to spawning comes from productive shelf waters rather than the open ocean waters that 

they occupy in the Gulf of Mexico (Teo et al. 2007b). Foraging hotspots occur on shelf and slope 

waters from Nova Scotia to the Mid-Atlantic Bight (Walli et al. 2009) where ABFT feed on 

seasonal aggregations of lipid-rich schooling fish prey including Atlantic herring, Atlantic 

mackerel (Scomber scombrus), sand lance (Ammodytes spp.), and menhaden (Brevoortia 

tyrannus) (Chase 2002; Butler et al. 2010; Pleizier et al. 2012; Logan et al. 2015; Varela et al. 

2020). Muscle δ15N values appear to reflect summer and autumn periods of increased 

consumption of these high caloric prey (Chase 2002; Butler et al. 2010; Pleizier et al. 2012; 

Logan et al. 2015; Varela et al. 2020) rather than winter and spring Gulf of Mexico forage 

species of lower energy density (e.g., gelatinous prey) (Butler et al. 2015). Bulk δ15N values of 

higher trophic level Gulf of Mexico fish prey (e.g., lancetfish, x = 9.3 ‰, (Keller et al. 2016)) are 

lower than western Atlantic shelf forage (e.g., Atlantic herring,x = 11.7 ‰, (Fry 1988; MacNeil 

et al. 2005; Logan et al. 2015; Malek et al. 2016)). The primary documented Gulf of Mexico 
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prey, the pelagic tunicate P. atlanticum, is a filter feeder (Conley et al. 2018) that would 

presumably have an even lower bulk δ15N value based on its TP and data for pyrosomes from 

other pelagic habitats (e.g., Décima et al. 2019; Schram et al. 2020). Source amino acid δ15N 

values also match western shelf and slope fauna more closely than Gulf of Mexico fauna overall 

(but see yellowfin tuna; Table S2), further suggesting ABFT muscle δ15N values reflect prior 

foraging habitats rather than local waters where they were harvested. 

 The prevalence of open ocean foraging classification among eastern Atlantic ABFT is 

consistent with previous tagging and chemical tracer studies showing a high degree of residence 

in the Mediterranean Sea prior to spawning as well as movements from foraging habitats in the 

eastern Central Atlantic Ocean (Dickhut et al. 2009; Aranda et al. 2013; Fromentin and 

Lopuszanski 2014; Cermeño et al. 2015). Organochlorine contaminant ratios in ABFT muscle 

samples from the Mediterranean Sea largely reflected past foraging within the Mediterranean Sea 

(n=33; 87%) with a  smaller percentage of Atlantic migrants (n=5; 13%) (Dickhut et al. 2009). 

Mediterranean Sea residency was observed among ABFT electronically tagged in the western 

Mediterranean and Adriatic Sea regions (Fromentin and Lopuszanski 2014; Cermeño et al. 

2015). Indeed, our Adriatic Sea dataset was composed entirely of open ocean/Mediterranean Sea 

“migrants”, consistent with local foraging in Mediterranean Sea waters. While foraging within 

the Gulf of Mexico did not appear to be of sufficient duration and intensity to influence ABFT 

muscle δ15N values, the high percent of open ocean/Mediterranean Sea classifications for 

Mediterranean Sea ABFT is consistent with prolonged foraging within the Mediterranean Sea. 

Relatedly, open ocean/Mediterranean Sea classifications were higher among fish sampled within 

the Mediterranean Sea than the group sampled at the Strait of Gibraltar, presumably in transit 
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from the Atlantic to the Mediterranean Sea (Table 1). This could be due to Mediterranean Sea 

residency for some of the fish sampled in the Balearic and Adriatic Sea regions.  

For ABFT sampled within the Mediterranean Sea, open ocean classification could also 

reflect shelf foraging habitats within the Mediterranean Sea given similarities in prey baseline 

δ15N values between Mediterranean shelf and open ocean habitats (Table S1). Tagging data 

identified bluefin in presumed foraging grounds between the Gulf of Lions and Balearic Sea 

(Cermeño et al. 2015). Foraging on sardines and anchovies in shelf waters of the Gulf of Lions, 

for example, would presumably create ABFT tissue δ15N values classifiable as open ocean 

foraging habitat. Tagging data have shown that ABFT in the Mediterranean Sea primarily use the 

basin regions rather than nearshore waters (Cermeño et al. 2015). Shelf habitat is fairly 

constrained across the Mediterranean Sea with only limited areas < 200 m in depth, which are 

found primarily in the north Adriatic, the Tunisian shelf, Gulf of Lions, the shelf between Sicily 

and Malta, and the shelf containing Sardinia and Corsica (Leanza 1993). This uncertainty applies 

to ABFT sampled in the Gulf of Mexico and Mediterranean Sea classified as open ocean 

migrants but would not impact classifications for ABFT intercepted prior to Mediterranean Sea 

entry (i.e., Morocco and Strait of Gibraltar samples).  

For these fish sampled from traps off Morocco and the Strait of Gibraltar that were 

intercepted prior to entry into the Mediterranean Sea, the high open ocean classification rate is 

consistent with extensive occupancy of offshore waters in the eastern Central Atlantic Ocean 

observed following departure from the Balearic Sea (Aranda et al. 2013). ABFT forage on 

ommastrephid squids, barracudinas and other mesopelagic prey in the central Northeast Atlantic  

(Olafsdottir et al. 2016). Mesopelagic fauna are also among the dominant prey in open ocean 

foraging habitats in the Mediterranean Sea, where myctophids and ommastrephid squids are 
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among the primary ABFT prey (Karakulak et al. 2009; Battaglia et al. 2013). Many of these prey 

groups are found in dense aggregations (Collins et al. 2008; Gartner et al. 2008) and have high 

caloric value (Ackman et al. 1972; Saito and Murata 1998; Glaser 2010; Goetsch et al. 2018; 

Logan et al. 2021); thus, open ocean foraging habitats also provide energy resources to fuel 

spawning activity.  

 The Mediterranean Sea-associated ABFT in our study also included shelf migrants, 

particularly among the Strait of Gibraltar dataset, reflecting a diversity of foraging habitats 

among the overall eastern Atlantic spawning assemblage. Some ABFT tagged on Balearic Sea 

spawning grounds traveled to eastern Atlantic shelf and slope waters in the Bay of Biscay 

(Aranda et al. 2013), an important foraging habitat for ABFT with lipid-rich schooling fishes like 

anchovies (Engraulis encrasicholus) (Uriarte et al. 1996; Logan et al. 2011) that provide similar 

forage bases to western shelf habitats (Chase 2002; Butler et al. 2010; Pleizier et al. 2012; Logan 

et al. 2015; Varela et al. 2020). Two ABFT tagged on Gulf of St. Lawrence foraging habitats in 

the autumn traveled to the Mediterranean Sea the following spring, providing some direct 

evidence of linkages between western shelf foraging habitats and Mediterranean Sea spawners 

(Wilson et al. 2015). A minority of ABFT sampled at the Strait of Gibraltar from 2008 to 2010 

had fatty acid profiles consistent with prior foraging in high latitude North Atlantic habitats, 

although the majority had profiles reflective of past foraging in temperate and subtropical waters 

(Mourente et al. 2015). 

  While our Mediterranean Sea stable isotope dataset mainly contained values 

representative of past open ocean or Mediterranean Sea foraging, a previous dataset of ABFT 

muscle from the western Mediterranean Sea (southern Tyrrhenian Sea) included a large size 

class (>178 kg) with elevated δ15N values (x̅ ± SD: 13.1 ± 0.2 ‰) that would be classified as 
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shelf migrants (Sara and Sara 2007). The authors attributed these high δ15N values to past 

migration from Atlantic waters where isotopic baselines are higher than Mediterranean Sea 

pelagic habitats (Sara and Sara 2007). These values closely match our Gulf of Mexico shelf 

dataset (x̅ ± SD: 13.5 ± 0.6 ‰) and exceed the mean values for shelf migrant groups from our 

eastern Atlantic dataset (x̅: 12.1-12.5 ‰; Table 1). This Tyrrhenian Sea region was not included 

in our dataset, so differences between studies could reflect differences in past movements among 

Mediterranean spawning grounds, although our Strait of Gibraltar dataset should reflect the 

diversity of ABFT spawning assemblages traveling from the Atlantic. Differences could 

potentially also reflect temporal variation in relative reliance on shelf and open ocean foraging 

habitats.  

For regions for which we had multiple sampling years (Gulf of Mexico and Strait of 

Gibraltar), relative shelf and open ocean prevalence varied annually with greatest divergence 

observed for both regions in 2012 (Table 1). Sea surface temperatures (SSTs) were elevated 

globally in 2012, particularly in the Northwest Atlantic (Mills et al. 2013; Xue et al. 2013). 

Muscle isotope values from ABFT sampled in spring to summer 2012 would mainly reflect 

foraging habitats in the prior fall (2011) and winter (2011/2012) rather than the summer 2012 

period when the anomaly was most pronounced (Mills et al. 2013), but warming in the 

Northwest Atlantic occurred throughout winter 2012 (Mills et al. 2013) and so could have 

influenced prey distributions within the timescale reflected in muscle isotope data (Madigan et 

al. 2012). We did not have 2013 data from the eastern Atlantic to examine for potential 

differences following the 2012 heat wave, but 2013 Gulf of Mexico data maintained the shelf 

dominance seen across the overall dataset. Temperature anomalies could have affected the 

spatial and/or temporal distribution of prey resources available to ABFT in the months prior to 



18 
 

spawning in 2012, although simultaneous anomalies in habitat use in 2012 could also be spurious 

results. 

 Compound-specific stable isotope data offered further insight into past foraging habitats 

relative to the general shelf and open ocean classifications produced from bulk nitrogen isotope 

data. For the Gulf of Mexico dataset, the relative similarity of source amino acid δ15N values of 

both classification groups to fauna from shelf and slope waters of the eastern and western 

Atlantic supports the primary shelf classification and suggests that even the minority open ocean 

group is likely associated with slope waters rather than more offshore waters of the Gulf of 

Mexico, Mediterranean Sea, or central Atlantic Ocean. ABFT source amino acid values most 

closely aligned with other mobile fauna (e.g., loggerhead sea turtles, ocean sunfish, other tuna 

species; Table S2), which could indicate a similar integration of baseline values in muscle tissue 

among species foraging across multiple areas (e.g., shelf and slope waters).    

Caveats 

The amino acid literature comparison is limited by several caveats. For example, source 

amino acid trophic fractionation dynamics are still not fully understood (McMahon and 

Newsome 2019), all TP estimates used to normalize literature values have a degree of 

uncertainty, and other highly migratory fauna (e.g., yellowfin tuna) included in our literature 

dataset may reflect source isotope values from past migratory habitats rather than the area of 

collection. Uncertainty in trophic fractionation will have the greatest bias for low trophic level 

fauna that are several TPs below ABFT (e.g., zooplankton) and may partly explain the lack of 

agreement between Gulf of Mexico ABFT and literature zooplankton values. Isotopic differences 

between Gulf of Mexico ABFT and literature fauna had intra-region variability among species 

(Table S2; Fig. S1), likely due to the previously mentioned caveats. While Gulf of Mexico ABFT 
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source amino acid values were most similar to Atlantic shelf and slope fauna, individual taxa 

from the Mediterranean Sea and Gulf of Mexico were also closely aligned with ABFT values 

(Table S2). These discrepancies suggest that, much like bulk δ15N values, source amino acid 

δ15N values may not be distinct for all habitats and geographic regions. Further exploration of 

source amino acid δ15N isoscapes is needed to better determine the efficacy of amino acid δ15N 

in distinguishing past movements and habitat use of mobile marine predators.  

 Bulk SIA is a powerful tool for assessing general habitat use of highly migratory species, 

but when applied without complementary methods, these data can result in false interpretations 

(Fry 2006). While liver has a more rapid turnover rate than muscle in tunas (Graham 2008; 

Madigan et al. 2012), if ABFT or swordfish used in our training dataset were recent migrants, 

their liver tissue may not have been in steady state with the local baseline (Logan et al. 2021). 

Several outliers in our open ocean/Mediterranean Sea training dataset had high nitrogen isotope 

values that overlapped with our shelf dataset (Fig. 2), which could have been from recent shelf 

migrants. Many of the eastern Atlantic ABFT in our dataset with past shelf foraging assignments 

had δ15N values that were similar to the higher end of the open ocean assignment range (~12.2 

‰). These fish may have actually been open ocean migrants or fish that foraged in both open 

ocean and shelf waters prior to sampling. This error could be further compounded by any annual 

variability in δ15N baselines among sampling years. Amino acid δ15N CSIA confirmed that bulk 

δ15N variation among individual ABFT was mainly driven by spatial (i.e., habitat) influences 

rather than trophic variability, but trophic influences cannot be ruled out for the eastern Atlantic 

dataset. Our isoscape dataset was also not comprehensive of all of the foraging habitats 

encountered by ABFT in the North Atlantic Ocean, although ocean-scale isoscapes (McMahon et 

al. 2013) suggest that our general open ocean and shelf classification δ15N groups are robust.  
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Conclusions 

Bulk and compound specific stable isotope analyses provide insight into general past 

foraging habitat use of ABFT on spawning grounds. These data reveal the habitats that fuel 

spawning migrations and activity and reflect clear differences in the relative reliance on shelf and 

open ocean/Mediterranean Sea foraging habitatss for western and eastern Atlantic spawning 

assemblages. Gulf of Mexico spawners primarily rely on shelf and slope-associated food webs 

while Mediterranean Sea spawners have a greater connectivity to open ocean and Mediterranean 

Sea food webs. While bulk SIA lacks the resolution to identify the geographic locations of these 

respective habitat types, prior tagging and chemical tracer data suggest that most Gulf of Mexico 

spawners traveled from western Atlantic shelf and slope foraging habitats (Dickhut et al. 2009; 

Galuardi et al. 2010; Wilson et al. 2015) while Mediterranean Sea spawners primarily used either 

local foraging habitats or similar habitats in the eastern Central Atlantic Ocean (Aranda et al. 

2013; Fromentin and Lopuszanski 2014; Cermeño et al. 2015). Bulk SIA provides a cost-

effective tool to infer large scale movements and habitat use of ABFT and other highly migratory 

marine predators. ABFT migration patterns and habitat use vary temporally (e.g., recent return to 

Nordic foraging habitats (Aarestrup et al. 2022)); a bulk SIA monitoring approach offers a way 

of tracking potential changes in habitat use over time. Future studies would benefit from the 

inclusion of additional chemical tracers and electronic tagging to complement bulk and 

compound-specific SIA.   
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Figure 1. Map showing collection locations of Atlantic bluefin tuna (ABFT; Thunnus thynnus) 

used in the migration classification analysis. Green squares show locations of ABFT liver 

samples used to define previous shelf foraging (Gulf of St. Lawrence, Nova Scotia, Gulf of 

Maine, Mid-Atlantic Bight). Orange circles and lines show locations of ABFT liver samples used 

to define previous open ocean foraging (western Central Atlantic Ocean*, eastern Central 

Atlantic Ocean, Canary Islands, Mediterranean Sea*). Black triangles show spawning locations 

and migratory corridors to spawning locations where ABFT muscle samples were sampled to 

infer past movements using the liver training dataset (Gulf of Mexico, Morocco coast, Strait of 

Gibraltar, Balearic Sea, Adriatic Sea).  *Swordfish (Xiphias gladius) were used as a proxy for 

ABFT in the western Central Atlantic Ocean and Mediterranean Sea.  
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Figure 2. Boxplots of bulk nitrogen stable isotope ratios (δ15N) of Atlantic bluefin tuna (ABFT; 

Thunnus thynnus) liver tissue from open ocean (Eastern Central North Atlantic (ECNA), 

Western Central North Atlantic (WCNA), Canary Islands (CNR), and Mediterranean Sea 

(MED)) and western shelf (Gulf of St. Lawrence (GSL), Nova Scotia (NS), Gulf of Maine (GM) 

and Mid-Atlantic Bight (MAB)) foraging grounds. All samples collected from adult ABFT 

except WCNA and MED, which consist of adult swordfish (Xiphias gladius). Values were 

adjusted to reflect predicted equivalent white muscle δ15N values based on an estimated offset of 

+0.8‰. The dark line of the boxed data represents the median and the box represents the 

interquartile range (IQR). Whiskers capture 1.5 IQR, and outliers are shown as circles. Variable 

box widths are proportional to sample size for each group. 

Figure 3. Boxplots of bulk nitrogen stable isotope ratios (δ15N) of Atlantic bluefin tuna (ABFT; 

Thunnus thynnus) liver tissue from shelf (Shelf) and open ocean (OO) foraging grounds and 

muscle tissue from the Gulf of Mexico (GMX), Morocco coast (MOR), Strait of Gibraltar 

(GBR), Balearic Sea (BAL), and Adriatic Sea (ADR). All samples collected from adult ABFT 

except open ocean samples from the western Central Atlantic Ocean and Mediterranean Sea, 

which consist of adult swordfish (Xiphias gladius). Liver values were adjusted to reflect 

predicted equivalent white muscle δ15N values based on an estimated offset of +0.8‰. The dark 

line of the boxed data represents the median and the box represents the interquartile range (IQR). 

Whiskers capture 1.5 IQR, and outliers are shown as circles. Variable box widths are 

proportional to sample size for each group. 

Figure 4. Mean ± SD  δ15N (‰) offset of source amino acids for marine fauna from 

representative shelf and open ocean Atlantic bluefin tuna (ABFT; Thunnus thynnus) foraging 

grounds in the Gulf of Mexico, Mediterranean Sea, and North Atlantic Ocean. All values were 

normalized to our Gulf of Mexico shelf migrant dataset based on estimates of trophic position for 

this ABFT group (TP=4.4) and each comparative faunal group with estimated diet-tissue 

discrimination factors of 0.1‰ (Phe), 0.4‰ (Met), and 0.8‰ (Lys). 

Supplementary Figure S1. δ15N (‰) offset of source amino acids for individual marine fauna 

from representative shelf and open ocean Atlantic bluefin tuna (ABFT; Thunnus thynnus) 

foraging grounds in the Gulf of Mexico, Mediterranean Sea, and North Atlantic Ocean. All 

values were normalized to our Gulf of Mexico shelf migrant dataset based on estimates of 

trophic position for this ABFT group (TP=4.4) and each comparative faunal group with 

estimated diet-tissue discrimination factors of 0.1‰ (Phe), 0.4‰ (Met), and 0.8‰ (Lys). 

Individual datasets corresponding to each region are detailed in Supplementary Table 2. 
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Table 1. Summary of classification estimates and associated stable isotope (δ15N; ‰), 

carbon to nitrogen ratio (C:N), and length (straight fork length (SFL: cm) data for 

Atlantic bluefin tuna (ABFT; Thunnus thynnus) on or approaching spawning habitat. 

Values are reported as means with standard deviations provided in parentheses.   

Region Year Classification Percent N δ15N  C:N SFL 

(%) (‰) (cm) 

Gulf of 2007 Shelf 95.8 23 13.6  4.7 243 

Mexico (0.6) (2.0) (24) 

Open Ocean 4.2 1 11.8   3.5 240 

2008 Shelf 91 31 13.6  4.4 247 

(0.6) (1.6) (20) 

Open Ocean 9 3 11.0  16.5 252 

(0.8) (22.7) (8) 

2009 Shelf 92.5 74 13.5  4.4 252 

(0.7) (1.6) (18) 

Open Ocean 7.5 6 11.7  3.7 247 

(0.4) (0.3) (11) 

2010 Shelf 89 33 13.5  4.0 247 

(0.7) (0.6) (19) 

Open Ocean 11 4 11.0  6.7 237 

(0.7) (3.9) (10) 

2011 Shelf 100 6 13.7  4.0 247 

(0.6) (0.6) (16) 
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Open Ocean 0 0 NA  NA NA 

2012 Shelf 78 14 13.7 

(0.6) 

 3.7 

(0.4) 

247 

(14) 

Open Ocean 22 4 11.7 

(0.2) 

 3.7 

(0.8) 

244 

(19) 

2013 Shelf 89 25 13.6 

(0.7) 

 4.9 

(1.8) 

237 

(17) 

Open Ocean 11 3 11.5 

(0.5) 

 3.4 

(0.2) 

240 

(14) 

All Shelf 91 233 13.5 

(0.6) 

 4.6 

(1.9) 

245 

(20) 

Open Ocean 9 23 11.4 

(0.5) 

 6.1 

(8.2) 

242 

(12) 

Morocco 2010 Shelf 4 1 12.1  5.1 151 

  Open Ocean 96 23 11.1 

(0.4) 

 4.5 

(0.8) 

188 

(49) 

Strait of 

Gibraltar 

2009 Shelf 24 11 12.5 

(0.3) 

 3.1 

(0.0) 

203 

(29) 

Open Ocean 76 34 11.5 

(0.3) 

 3.2 

(0.1) 

205 

(19) 

2010 Shelf 6 3 12.3 

(0.4) 

 3.9 

(0.6) 

198 

(9) 

Open Ocean 94 44 10.9  4.7 206 
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(0.4) (1.5) (16) 

2011 Shelf 5 1 12.4  3.6 180 

Open Ocean 95 20 10.9 

(0.4) 

 3.6 

(0.5) 

204 

(25) 

2012 Shelf 58 14 12.4 

(0.3) 

 4.4 

(0.9) 

208 

(26) 

Open Ocean 42 10 11.5 

(0.4) 

 4.7 

(1.1) 

220 

(23) 

All Shelf 21 29 12.4 

(0.3) 

 3.8 

(0.9) 

204 

(22) 

Open Ocean 79 108 11.1 

(0.5) 

 4.0 

(1.2) 

207 

(22) 

Balearic 

Sea 

2009 Shelf 9 2 12.5 

(0.3) 

 3.9 

(1.1) 

171 

(3) 

  Open Ocean 91 21 10.9 

(0.5) 

 3.8 

(0.8) 

189 

(28) 

Adriatic 

Sea 

2010 Shelf 0 0 -  - - 

Open Ocean 100 25 10.8 

(0.6) 

 3.9 

(1.0) 

194 

(32) 
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